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Abstract-This paper presents a consistent finite element formulation for the analysis of large displacements and
finite strains in elastic membranes of general shape. A continuous membrane is divided into a number of flat
triangular elements and the behavior of a typical element is described in terms of the displacements of its nodes.
It is assumed that the node points are sufficiently close that the displacement fields within each element can be
approximated by linear functions of the local coordinates. On the basis of this assumption, the Lagrangian strain
tensor is expressed in terms of the node displacements and a nonlinear stiffness relation between node forces and
displacements is derived. Group transformations are introduced which re-assemble the elements and apply
appropriate boundary conditions. These lead to systems of nonlinear algebraic equations in the generalized
displacements. Numerical examples are included to demonstrate the procedure.

NOTATION

Indicial notation and the summation convention are used throughout this paper. Unless otherwise specified,
upper-case Latin indices indicate points in space and lower-case Latin indices indicate elements of an array. In
general, Greek indices are associated with local coordinate systems and range from I to 2. The following symbols
are used:

aij

eN«

di

e
n

PNk

PNk

PNk

q
Qi,Q;
Ui

"Hi

"Hi

V, Vo
Xi

X eNi

y;
A,An
C,C"C2

E
Eijkl
11 ,12 ,13

Z;

constants in displacement approximation
node displacement coefficients
components of rigid-body translation
element identification index
total number of nodes in assembled system
generalized node forces in local coordinates
generalized node forces in transformed coordinates
generalized node forces in global coordinates
pressure
element node forces due to q
displacement components in local coordinates
element node displacements in local coordinates
element node displacements in transformed coordinates
volume of deformed and undeformed element
local coordinates
coordinates of node N of element e
local coordinates of deformed element
area of deformed and undeformed element
material constants
total number of finite elements
array of material constants
strain invariants
global coordinates
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ZNi global coordinates of node N
Pij transformation matrix
Yij Lagrangian strain tensor
bij Kronecker delta
A. extension ratio
(J.p stress tensor
neMN homomorphic mapping constants

INTRODUCflON

THE general theory of elastic membranes can be regarded as a special case of the general
theory of finite elasticity. In many respects, it is a simpler theory since it treats the stress
field as essentially two-dimensional. Moreover, in the case of incompressible materials, the
hydrostatic pressure can be determined immediately from the condition that the stress
normal to the deformed membrane surface becomes negligible in comparison with the
stresses in the tangent plane as the thickness of the membrane diminishes. Practically
speaking, however, quantitative descriptions of the behavior of thin membranes are often
more complex than that of three-dimensional bodies. Whereas the behavior of many
structural systems are adequately described by linear theory, the behavior of most mem­
branes is inherently nonlinear. Lateral pressure, for example, can stretch an initially flat
membrane into a spheroidal balloon; then elements of the membrane undergo large dis­
placements and rotations, and the strains of the middle surface may be appreciably greater
than unity. For such problems, the theory ofelastic membranes leads to systems ofdifferen­
tial equations which, even in the case of relatively simple loading and geometry, must be
integrated by numerical methods in order to obtain quantitative results.

The theory ofelastic membranes, as for example, propounded by Green and Adkins [1 J,
treats the problem as one of plane stress in a continuous media. Regardless of the concepts
involved in the formulation, however, if numerical methods are employed to obtain
quantitative results, the continuum is, in effect, approximated by a discrete model in the
solution process. This paper investigates a logical alternative to this classical approach;
namely, that of representing the continuum by a discrete model at the onset. The formula­
tion of consistent discrete model is accomplished by use of the finite element concept [2J
wherein a continuum is approximated by a finite number of component parts called ele­
ments. In this way, the problem reduces to one of determining a finite number of discrete
variables which, in this study, are taken as the displacements of selected node points on
the membrane.

The literature on applications or" the finite element technique to general nonlinear
problems is not extensive. The first application of this method to relatively simple geo­
metrically nonlinear problems appears to have been presented by Turner et al. [3]. Subse­
quent contributions were made by Argyris [4] and Martin [5J, among others. Nonlinear
finite element formulations of certain geometrically nonlinear elasticity problems were
presented by Wissmann [6, n whose work is based on the assumption of small strains and
an ideal Hookean material. Wissmann's approach has the advantage that nonlinear
characteristics in the behavior of a system can be identified in the development and the
relative importance of nonlinear terms can be easily evaluated. The majority of the litera­
ture available on the subject, however, including the original work [3], takes into account
geometric nonlinearity by successive corrections to a linearized problem. The paper by
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Martin [5J contains a survey of the literature using this successive correction approach.
No applications to finite strains appear to be available in the literature.

The present paper adopts Wissmann's approach in that the formulation leads to
nonlinear stiffness relations. In this case, however, these relations are valid for gross deform­
ations of membranes of general shape under variable pressures, and account for the effects
of finite strains.

The discussion to follow is divided into six parts. In the first of these, various kinematic
and geometric properties of the discrete model a membrane are examined, and it is shown
that a continuous membrane can be represented by an assembly of a finite number of small
triangular elements connected together at their vertices. The displacement fields within
these elements are assumed to be linear functions of the initial coordinates and, as such,
they can be expressed in terms of the displacements ofthe element's nodes. This discussion
is followed by a section on strains in continuous membranes wherein the strain tensor
and its invariants are expressed in terms of the generalized displacements. With this done,
the kinematics of the discrete system are completely defined. Next, the principle of virtual
work is used to derive general nonlinear stiffness relations for finite elements of various
materials. Particular emphasis is given to the analysis ofhomogeneous isotropic membranes
constructed of incompressible materials which exhibit strain energy functions of the
Mooney [8] or the neo-Hookean [9] form. The analysis of Hookean membranes under­
going small strains but large displacements is also examined. It is shown that in the case of
large deformations stiffnesses no longer transform congruently, as in the linear case.
The fourth section contains a discussion of transformations which assemble the discrete
elements into a single unit, and the fifth section deals with the analysis of membranes
subjected to external pressure. The final section contains numerical results and discussions
of convergence and the numerical procedure used to solve the systems of nonlinear
equations generated in the analysis.

KINEMATIC CONSIDERATIONS

Consider a homogeneous elastic membrane which, in its initial (unstrained) state
occupies a finite region [}to in space. The region [}to is defined by two material surfaces
which are a uniform distance ho apart; the parallel surface bisecting ho is the middle surface
of the membrane. The locations of points in (}to are specified by an orthogonal Cartesian
coordinate system Zi whose origin is not necessarily within the region. The Zi coordinates
are referred to as the global coordinates of the system.

Since an infinite number of material points lie in [}to, an infinity of coordinates Zi
are required to completely specify the initial configuration of the membrane. To reduce
this continuously distributed system to a discrete one, the membrane is approximated by
a discrete model consisting of a finite number E of flat triangular elements. The geometry
ofeach element in the initial state is thus defined by a plane ofuniform thickness hobounded
by straight lines which intersect at three points, called the node points of the element.
Let n denote the total number ofnodes in the assembled system and let ZNi (N = 1,2, ... , n;
i = 1,2,3) denote the global coordinates of a typical node N. Then the set of numbers ZNi

constitutes a finite point set which defines the geometry of the discrete system. The set ZNi

is said to describe the external space of the system.
In addition to the global reference frame, fixed local coordinate systems xei(e = 1,2, ...

E; i = 1, 2, 3) are established in the neighborhoods of each element. The Xei are referr
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to as the local coordinates ofelement e. The behavior ofeach element is to be first described
independently in terms of its local coordinates and is then to be transformed into global
coordinates when the connectivity and the boundary conditions are established. For
simplicity, it is assumed that each element e lies in the Xe1 , X e2 plane of its local coordinate
system.

A rigid rotation of a typical local system X ei transforms it into the x ei system whose
coordinate lines are parallel to the corresponding global coordinate lines. That is, X ei "

are rotated parallel to the global coordinates Zi by the orthogonal transformation

X ei = PejiXej (no sum on e) (1)

where Peji is the direction cosine of the angle between Zj (or xeJ and x ej . Clearly, x ei and Zi

differ only by a constant vector.
Following a procedure similar to that used for global coordinates, the local coordinates

of a typical node N of element e are denoted X eNi (e = 1, 2, ... , E; N, i = 1,2, 3); or, if the
local coordinates are rotated parallel to the global coordinates, the local coordinates of N
are denoted x eNj . Further, a numbering sequence of the nodes associated with each element
is adopted whereby once node 1 of an element is identified, nodes 2 and 3 follow in cyclic
order according to the right-hand rule. Note that due to the particular choice of local
coordinates, XeN3 = o.

The set of numbers XeNi (or xeNJ constitutes a finite point set which is said to describe
the internal space associated with element e. The transformation which maps points in
the external space (that is, points in the set ZNi) into points in the internal spaces (that is,
points in the sets XeNi) establishes the connectivity of the system and, in effect, assembles the
individual elements into a single discrete system. Such transformations are to be discussed
later. The discrete model of the membrane and the local and global coordinates are il­
lustrated in Fig. 1.

Attention is now confined to a typical element of the system and the element index e
is temporarily dropped for clarity.

A general motion of the membrane is now considered which carries the system from
its initial configuration fJto to a deformed configuration fJt. In general, straight lines con­
necting node points in fJto will become curved lines in fJt. However, if the node points in fJto
are selected sufficiently close to one another, node lines in the deformed body are closely
approximated by a system of straight line segments. This is equivalent to assuming that
the displacement fields corresponding to a given element are linear functions of the local
coordinates of that element. That is,

(i = 1,2,3; 0: = 1,2) (2)

where U j are the components of displacement, di are the rigid-body translations of the
element, and a iac are undetermined constants.

Evaluating equation (2) at each of the three node points gives the set of relations

(3)

in which UNj (N = 1,2,3) is the displacement of node N in direction i, dNi is the part of UNi

due to the rigid translation of the element, and X Nac (0: = 1, 2) are the local coordinates of
node N. Again, it is understood that indices N = 1,2, 3 are to be associated with the three
nodes ofelement e. The components dNj , ofcourse, are the same for all nodes ofthe element.
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L-------------Z 1

FIG. 1. Finite element representation of a membrane.

Thus, by setting

dll = dZI = d31 = d1

d1Z = dzz = d3Z = dz

d13 = dZ3 = d33 = d3

(4)

equations (3) reduce to nine simultaneous equations for the three components di and the
six parameters aja' Ifequations (3) are expanded by first letting the index i take on values of
1, 2, and 3 and then expanding on N, the form of the coefficient matrix is particularly easy
to invert. It is found that the solutions are

(5)

and

where

k 1 = (X Z1 X32 -X31 X n )/2Ao

k z = (X 12 X 31 -X ll X 32 )/2Ao

k3 = (XllXZZ-X1ZXZ1)/2Ao

(6)

(7)
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(8)

Here A o is the area of the undeformed triangle. The quantities CNa are called the displace­
r.:ent coefficients. Note that they are independent of the deformation ofthe membrane and
are computed directly from the geometry of the undeformed element.

Introducing equations (5) and (6) into equation (2) gives

(9)

Similarly, the derivatives of the displacement components are given by

(10)

MEMBRANE STRAIN TENSOR

In order to describe the deformation of a continuous body, the region yto occupied by
the body at some reference time '0 is identified and the configuration of the body in this
initial state is specified by the metric coefficients of material lines within yto' In the present
case, these material lines are assumed to be initially parallel to the fixed Cartesian system
Xi so that the metric tensor at '0 is simply the Kronecker delta, bu. The motion of the body
is assumed to carry it continuously from one configuration to another so that at some time
, > '0 the body occupies the region yt. The location of points originally given by coordin­
ates Xi now have coordinates

(11)

with respect to the fixed local system Xi'

According to Green and Adkins [1], the Lagrangian strain tensor is defined by the
relation

(12)

where bij is the Kronecker delta. For very thin membranes, the deformation is assumed
to be symmetric about the middle surface Y3 = 0 so that Y3 is an even function of X3'

It follows that on the middle surface

(13)

where A is a scalar function representing the extension ratio at the middle surface in a
direction normal to the middle surface.
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In the following developments, it is assumed that the membrane thickness is so small
in comparison with other characteristics dimensions that the strain components are
essentially uniform over h. If such is the case,

h
A=­

ho

where hoand h are the membrane thicknesses in fJI 0 and fJI respectively. It then follows from
equations (12), (13), and (14) that for thin membranes

1( oUa oUp oU j OUi )
'Yp=--+-+--

a 2 OXp OXa OXa OXp

'Ya3 = 0

'Y33=!(A
2-1) (15)

in which lX, f3 = 1, 2 and i = 1,2, 3. Further, in this case the three invariants of the tensor
'Yij can be expressed in the form

11 = A
2 +2(1+ 'Yaa)

4 2 1
12 = -A +A 11 + A2I3

(16)

where eap and eA." are the two-dimensional permutation symbols (e 12 = 1, e2l = -1,
ell = en = 0).

For the discrete system, the strain components are expressed in terms of the node
displacements by introducing equation (10) into equations (15):

'Yap = !(CNaUNp +CNpUNa + cNaCMpUNiUM;)

'Ya3 = 0

'Y33 = 1(A2-1) (17)

wherein IX, f3 = 1, 2 and M, N, i = 1,2, 3.
Note that equations (17) give the strains in terms of a specified displacement field.

Hence, the compatibility equations are automatically satisfied within the boundaries of
each finite element.

NONLINEAR STIFFNESS RELATIONSHIP

Let PMk denote the generalized force at node M acting in the direction k corresponding
to the node displacement UMk' If the node displacements are given variations 8UMk' the
forces PMk perform an amount of external virtual work equal to PMk8uMk' Assuming that
the deformation process is reversible and isothermal, an elastic potential function Wexists
which represents the strain energy per unit volume of the undeformed element. In general,
W can be written as a function of the strains, and, by virtue of equations (17), it can also be
expressed as a function of the node displacements. It then follows that the variations 8UMk
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lead to a variation in the strain energy per unit volume of

(18)

The total internal virtual work is then

(19)

where Va is the volume of the undeformed element. Note that it is permissible to factor bW
outside the integral since W is a function of strains which, in view of equations (17), are
constant throughout the element.

From the principle of virtual work, the strained element reaches an equilibrium state
when the internal and external virtual work are equal for arbitrary values of bUMk. There­
fore,

(20)

The precise form of the stiffness relation in equation (20) depends upon the form of the
elastic potential function JoY, which, in turn, depends upon the type of material of which the
element is composed. In the following, it is assumed that the element is composed of an
isotropic, perfectly elastic material, in which case

(21)

where II, 12 , and 13 are invariants of the strain tensor defined in equations (16).
The general stiffness relation for a finite element of an elastic body is obtained by

introducing equation (21) into equation (20):

Note that

v = voJI 3

(22)

(23)

In differentiating the invariants with resPrct to )'ij it is understood that all other strain
components are held constant, including )'ji.

Rivlin [10] noted that for compressible materials W can be expressed as a polynomial
function of the strain invariants of the form

(24)
r.s,t

where Erst are material constants. When written in this form, W is zero in the unstrained
state of the body. Toupin and Bernstein [11] used an alternate but equivalent formula for
W for compressible materials, which is obtained by representing Was a polynomial in the
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strains of the form

(25)

where E ijklo Eijklmn, .•. , etc. are multi-dimensional arrays of material constants. In the case
of small strains, W is approximated by taking only the first term in the polynomial in
equation (25) and W reduces to the energy function of the classical Hookean material:

(26)

In the case of incompressible materials, the third strain invariant 13 equals unity, the
volumes Vo and v of the undeformed and the deformed elements are equal, and W is given
only in terms of 11 , and 12 ,

For certain incompressible rubber-like materials, Mooney [8] has proposed a strain­
energy function of the form

(27)

where C1 and C2 are experimentally determined constants. Rivlin and Saunders [12, 13J
verified experimentally that equation (27) gives a suitable form of W for certain highly
elastic materials such as vulcanized rubber. Elastic materials with strain--energy functions
of this form are often referred to as Mooney-Rivlin materials.

Treloar [14], using a statistical approach based on the molecular theory of highly­
elastic materials, found for incompressible materials

W = C(I l -3) (28)

where C is a constant. Rivlin [10] refers to materials exhibiting this form of strain--energy
function as neo-Hookean.

Hereafter, attention is confined to elastic membranes constructed of incompressible
materials with strain--energy functions of the form given in equations (27) or (28) or com­
pressible materials subjected to small strains, for which the strain--energy function is of the
form indicated in equation (26).

Consider first an incompressible membrane of Mooney-Rivlin material. From the
incompressibility condition 13 = 1, it is found that

11 = ,1.2 +2(1 + y~~)

1 2
12 = ,F + 2,1. (1 + I'~~)

(29)

Further note that

(30)
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(32)

(33)

fap = Jap +2e/lae;"pY/l;" (31)

The scalar ,1.2and the surface tensor fap are expressed in terms of the node displacements
by introducing equations (17) into equations (29) and (31):

,1.2 = [1 +cNiuNa +tcMaUNiUM;) + eape;"/l(cNaUN;"

+ tCNaCM;"UNiUM;)(CLpUL/l +CL/lULP +CKpCL/lUKjULk)] - 1

laP = Jap + e/lae;"P(CN/lUN;" +CN;"UN;" +CN;"CM/lUNiUMi)

i,j,L,M,K = 1, 2, 3;0(,p,,1.,J,l, = 1,2

Finally, introducing equations (29) through (32) into equation (22) and simplifying
gives the nonlinear stiffness relation for a finite element of a Mooney-Rivlin membrane:

PNk = 2VOCNa(JPk+CMpUMk){Cl(Jap-,1.'YaP)

+C2[fap(1- 2.-1.4 - 2,1.4y/l/l)+ y2Jap ]}

In this equation,

Y/l/l = cNiuN/l+!CM/lUNiUMi)

and .-1.2 and fap are as given in equations (32).
The stresses in the element are calculated by means ofthe formula [1]

(lap = 2.-1.{C1(Jap -.-1.4fap)+ C2[.-1.2Jap +(1 - 2.-1.4 - 2,1.4Y/l/l)fap])

(34)

(35)

where (lap is the stress tensor per unit of cross-sectional area of the deformed membrane.
The nonlinear stiffness relation for neo-Hookean membranes is obtained directly

from equation (33) by replacing C1 by C and equating C2 to zero:

PNk = 2VOCNaC(JPk +CMpUMk)(Jap - A. 4fap) (36)

Similarly, for neo-Hookean membranes, equation (35) reduces to

(37)

In the case of Hookean membranes, strains are assumed to be small in comparison
with unity and the volume of the deformed element is approximately the same as that of
the undeformed element. Noting that for an isotropic membrane the tensor Ejjkl has the
symmetries

and introducing equations (17) and (26) into equation (22) gives

0(, p, A., J,l = 1,2; I, J, M, N, i, k = 1,2,3

This result agrees with that obtained by Wissman [6].
Stresses in Hookean membranes are obtained from the formula

(38)

(39)
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If products of the node displacements are neglected in comparison with the displace­
ments themselves, equation (38) reduces to the linear stiffness relation for plane stress:

(40)

The array E"p)..11 can be interpreted as the stiffness matrix for an infinitesimal volume
of the membrane. The remaining terms in equation (40) then transform this matrix con­
gruently into one associated with the finite element. On comparing equations (40) and (38),
it is seen that, contrary to the linear theory, congruent transformations are not admissible
in the case of large displacements.

MEMBRANE ANALYSIS

The nonlinear stiffness relations derived in the previous section describe the behavior
of a single finite membrane element within its local reference frame; these relations are
independent of the loading on the membrane, the boundary conditions, or the location of
the element in the assembled system. It is now necessary to connect the elements and to
sum their properties so as to represent a membrane of specified shape with specified
boundary conditions. Toward this end, it is convenient to first rotate the node forces,
node displacements and local coordinates associated with each element so that they are
parallel to the global reference frame Zi' This is accomplished through the transformations

PeMi = f3ekiPeMk

(no sum on e) (41 )

where PeMi and UeMi are the node forces and displacements of node M of element e in the
direction Zi' Xei are the rotated local coordinates defined in equation (l) and f3eki is the
cosine ofthe angle between Xei and Xek' In these equations, M, i, k = 1,2,3 and e = 1,2, ... ,
E where E is the total number of finite elements.

It was pointed out earlier that the set of numbers ZNi(i = 1,2,3; N = 1,2, , n)
describes the geometry of the assembled (connected) system whereas xeNi(e = 1,2, , E;
N, i = 1,2,3) describes that of the individual elements. The first set is referred to as the
external space of the discrete system and the second set is referred to as the internal space.
The connectivity of the system is established by relating the members of the set ZNi to those
of XeNi by the transformation

where

XeMi = QeMNZNi (M, i = 1,2,3; D = 1,2, ... , n) (42)

if node M of the element e is identical to node N in
the assembled system, and

if otherwise (43)

The transformation indicated in equation (42) defines a homomorphic mapping of points
in ZNi into points in XeNi and, in effect, assembles the elements into a single unit.
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(44)

Similarly, if PNk and U Nk are the node forces and displacements of the assembled system
(external space), it follows that

PNk = neMNPeMk

UeMk = neMNUNk

In this case the repeated index e is summed throughout its entire range: e = 1,2, ... , E.
Application of equations (41) through (44) completes the assembly of the discrete

system. To demonstrate, let PMk and URn denote the node forces and displacements cor­
responding to a finite element e. Then a nonlinear stiffness relation can be found ofthe form

(45)

where k(UeNk) is the appropriate nonlinear function of the node displacements. The func­
tions k(UeNk) for Mooney-Rivlin, neo-Hookean, and Hookean materials are defined by
equations (33), (36), and (38) respectively.

When the forces and displacements are rotated so that they are parallel to coordinates
Xei' equation (45) becomes

PeMi = K(ueN) (46)

where PeMi and ueNj are defined in equations (41) and

K(ueN) = f3eimk(f3~kjU~Nj) (47)

The underscored indices in this equation are not summed.
Finally, the global stiffness relations relate external node forces to node displace­

ments of the assembled system:

where PI' and UJs are given by equations (41) and

K( U Js) = neMIf3eimk(f3~kjn~NJ U Js)

Boundary conditions are applied by prescribing generalized forces or displacements
at the appropriate boundary nodes. Then equations (48) reduce to a system of independent
nonlinear algebraic equations in the unknown node displacements. This completes the
formulation of the problem.

EXTERNAL PRESSURE

As they now stand, the above stiffness relations are applicable only to membranes
subjected to loads which do not change in direction as the membrane deforms. Since this
is obviously a severe restriction in membrane analysis, attention is now directed toward
the adaptation of the method to account for changes in the external loading due to deforma­
tion.

Consider an elastic membrane subjected to a nonuniform lateral pressure. As the
membrane deforms, not only does the direction of this pressure change but also the area
on which it acts changes. To account for this, it is first assumed that the dimensions of each
finite element are sufficiently small that the pressure is essentially uniform over the surfaces
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of individual elements. Then, if q denotes the applied pressure on a typical element and A
denotes the surface area of the deformed element, the total force exerted normal to the
plane of the element is clearly

ij = Aq (49)

Now let Vi denote the components of an outward unit vector normal to A. Then the
components of the pressure force ij are given by

(50)

To determine the components V;, note that according to equation (11) the coordinates
of nodes of the deformed element are

(51)

For convenience in writing, the origin of the reference frame Yi is translated into node
point 3 of the deformed element. If the resulting coordinate system is denoted Zi' it follows
that

(52)

Now consider two unit vectors a and b emanating from the origin of the coordinates Zi

(node 3). The components Vi of the unit normal are obtained by forming the vector product
ofa and b:

where eijk is the permutation symbol. Thus, equation (50) can be written

qi = tqeijkZliz2k

(53)

(54)

The net external force at each node is obtained by simply representing q by three forces,
one at each node, whose components are

(55)

By introducing equation (52), equation (55) is transformed into the Yi coordinates:

(56)

(57)

Note that no node identification index is needed since Qi is the same for each node of the
element.

Equation (56) defines the generalized external force in the deformed coordinates pro­
duced by pressure loading. To complete the analysis, it is now necessary to transform these
forces into components Qi parallel to the local reference frame Xi' This is accomplished by
introducing equation (51) into equation (56) and then rotating the Xi coordinates into the
Xi system with the aid ofequation (1). The result for element e is

3

Qei = /2qe L bfittN(XeNj+UeNj)(XeMk+UeMk) (no sum on e)
p=l
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Equation (57) represents the final formula for the node forces on element e due to a
uniform pressure over that element. In the case of pressure loadings, the components Qei

take the place of the node forces PeNi of equations (41) and (46). It is seldom necessary to
transform these components into the global system, however, since it is more convenient
to first transform displacements into the Xi system with the aid of equations (41) and (44)
and then to transform the resulting forces into the global system.

NUMERICAL RESULTS

The systems of equations obtained in the present finite-element formulation are highly
nonlinear in the unknown node displacements. Of the variety of numerical schemes
available to solve systems of equations ofthis type, the Newton-Raphson method [15] is

UNDEFORII4ED CONFIGURATION

T
8"

DEFORMED CONFIGURATION

16"------1

(a) CONTINUOUS MEMBRANE

(b) 4 ELEMENT REPRESENTATION

(c) 16 ELEMENT REPRESENTATION

~
:.' .

, .

(d) 32 ELEMENT REPRESENTATION

~ -""'- /' /.
........ ../
../ --- ........
:;:;.-- ---... ":;/ ::s....-

(e) 72 ELEMENT REPRESENTATION

FIG. 2. Displaced configurations for various geometric representations for example A.
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perhaps the most straight forward. This method was used in the present study to solve the
nonlinear equations associated with finite element representations of several membrane
structures.

Briefly, in the Newton-Raphson method, the nonlinear stiffness relation is expanded
in a Taylor's series and truncated to only two terms. The first term represents a linear
stiffness relation and the second term represents a correction due to increments in the
node displacements. The linearized equations are solved for the displacements produced
by increments in the node forces and these are introduced into the nonlinear equations
to obtain corrected values for the force increments. A new set of linearized equations are
then computed using the truncated Taylor series. By successively solving the corrected
linearized equations for displacements produced by the corrected forces of the previous
cycle and correcting the node forces each time using the nonlinear equations, an iterative
scheme is established which can be used to solve large systems of highly nonlinear algebraic
equations.

In cases of concentrated loads and re-entrant corners, the numerical procedure con­
verges for any given finite element representation. However, as the finite element network
is refined, stresses in the neighborhoods of concentrated loads and re-entrant corners
diverge, in agreement with the exact solutions. Moreover, no provisions have been incor­
porated in the analysis to seek out adjacent equilibrium states for given loading conditions.
As a result, in some applications of the technique, ill-conditioned stiffness matrices may
arise from an improper choice of starting values of the undetermined displacements. This
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FIG. 3. Total edge load versus number of elements for stretching of a square membrane.
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can often be attributed to the fact 'that single-valued displacement fields seldom exist when
portions ofthe membrane are subjected to high compressive stresses. In such cases, negative
diagonal elements may be encountered in the linearized incremental stiffness matrices.
These matrices are then no longer positive definite and the iteration scheme diverges.
This situation can often be circumvented by arbitrarily prescribing a new set of initial
displacements.

The rate of convergence of the Newton-Raphson method depends, of course, on the
choice of initial values of the generalized displacements. As the number of elements is
increased, the rate of convergence decreases. Computational experience indicates that in
plane problems, such as that indicated in Fig. 2, convergence rates are considerably higher
than in cases involving lateral pressure. In the analysis of membranes which undergo large
out-of-plane deformations due to the action of prescribed external forces. rates of con­
vergence can be significantly increased by first analyzing a very coarse finite element
representation of the membrane using a small number of iterations. These results are then
used as starting values for a more refined representation, the displacements of the added
node points being obtained through linear interpolation.

Two examples are presented which indicate the application of the theory to problems
involving large strains. The first example consists of a square membrane stretched in one
direction to twice its original length. This is accomplished by prescribing displacements at
nodes along one edge and fixing the nodes of the opposite edge, as indicated in Fig. 2.
The purpose ofthis example is to verify the convergence of the solution process.
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FIG. 4. Geometry and finite element representation for initially flat circular membrane.
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It is assumed that the membrane is constructed of a Mooney-Rivlin material with
material constants C1 and C2 of 4·0 and 1·5 psi respectively. These values correspond to
those obtained experimentally by Rivlin and Saunders [12, 131 for synthetic rubber. Four
different cases were computed to examine the effect of approximating the membrane by
various finite element representations. The select patterns and the resulting configurations
are shown in Fig. 3.

As an indication of the convergence of the method, the total horizontal edge force is
plotted versus the number of finite elements in Fig. 3. This figure indicates that the edge
force converges monotonically to approximately 36 pounds. In this case, a close approxi­
mation is obtained using a relatively crude finite element representation.

As a second example, the inflation of an initially flat circular membrane is considered.
The membrane is composed of Mooney-Rivlin material with the same material constants
as that of the first example and it is subjected to a uniform external pressure of 1·65 psi.
Boundary conditions at the circumference are simulated by specifying zero displacement
at 15° intervals in the discrete representation of the continuously supported membrane.
The geometry and additional data for the example is given in Fig. 4.

A typical deformed segment and the computed displacement along a diameter for the
discrete model are shown on the right side of Fig. 5. The left side of this figure depicts a
conceptual configuration for a continuous membrane under the same loading obtained
by fitting smooth curve through the displaced nodes. The profile ofthe deformed membrane
is in good agreement with that given by Green and Adkins [1].
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FIG. 5. Displaced configuration of an initially flat synthetic rubber membrane due to uniform pressure.
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Resume--cet expose presente une formulation d'elements tinies consistente pour I'analyse de deplacements et
de tensions tinies dans les membranes elastiques d'une forme generale. Une membrane continue est divisee
en un nombre d'elements triangulaires plats et Ie comportement d'un element typique est decrit relativement
aux deplacements de ses noeuds. II est suppose que les noeuds sont assez proches pour que les champs de
deplacement dans chaque element puissent etre calcules approximativement au moyen des fonctions Iineaires
des coordonnees locales. A partir de cette supposition, I'element tensoriel de deformation de Lagrange est
exprime par rapport aux deplacements des noeuds et une relation de rigidite non lineaire entre les forces et les
deplacements des noeuds en est tiree. Des transformations de groupes sont introduites qui reassemblent les
elements et appliquent des conditions de limite appropriees. Celles-ci menent a des systemes d'equations
algebriques non lineaires dans les deplacements generalises. Des exemples numeriques sont indus pour demontrer
Ie procede.

Zusammenfassuog---Diese Arbeit gibt eine konsistente endliche Formulierung zur Analyse grosser Verschiebungen
und endlicher Dehnungen elastischer Membranen allgemeiner Form. Eine durchlaufende Membran wird in eine
Anzahl flacher Dreieckselemente geteilt und das Verhalten eines typischen Elementes wird beschrieben, ausge­
driickt als Verschiebungen der Knotenpunkte. Es wird vorausgesetzt, dass die Knotenpunkte so nahe zu den Ver­
schiebungsfeldem der einzelnen Elemente sind, dass diese durch Linearfunktionen der lokalen Koordinaten ange­
nahert werden kiinnen. Aufdiese Voraussetzung gestiitzt ist der Lagrange'sche Spannungstensor als Knotenpunkt­
verdrangung ausgedriickt und man erhiilt ein nichtlineares Verhaltnis fUr die Knotenpunktkrafte und Verd­
rangungen. Gruppen Verwandlungen werden eingefUhrt, die die Elemente umordnen und entsprechende
Grenzbedingungen einfUhren. Dies fUhrt zu nichtlinearen algebraischen Gleichungssystemen der verallgemein­
erten Verschiebungen. Numerische Beispiele werden gegeben urn den Vorgang zu zeigen.

AficTpaKT-Pa60Ta npeJJ,CTaBJIlieT KOMIIaKTHylO KOHe'fHylO <!K>PMYJlHPOBKY paC'feTa 60JlblllHX nepeMellleHHA

H KOHe'fHbIX JJ,ecl>opMaUHA ynpyroA MeM6paHbI npoH3BOJlbHOA cj>opMbI. CIIJIOlliHali MeM6paHa pa3JJ,eJleHa

HaHeKOTopbIe 'fHCJlO nJlOCKHX TpexyroJlbHbIX 3J1eMeHTOB, npH'feM nOBeJJ,eHHe THIIH'fHOrO 3J1eMeHTa

BbIpalKeHO B 3aBHCHMOCTH OT nepeMellleHHA HX Y3J10B. nOJJ,pa3YMHBaeTCll, 'fTO Y3J10Bble TO'fKH TecHO

CBJl3aHbI TaK, 'fTO nOJlll nepeMerueHHA BHYTPH KalKJJ,oro 3J1eMeHTa MOlKHa npH6J1H3HTb c nOMorublO

cl>YHKl\HA JlOKaJIbHbIX KoopJJ,HHaT. HcxoJJ,ll H3 3Toro npeJJ,IIOJlOlKeHHlI MOlKHa BbIpa3HTb TeH30p JJ,ecl>opMaUHH

JIarpaHlKa B BHJJ,e Y3J10B nepeMerueHHA. npHMeHlIeTCJl HeJIKHeAHali 3aBHCHMOCTb )J,JI1i lKecTKOCTH MelK)J,y

Y3J10BbIMH CHJlaMH H nepeMerueHKlIMH. npHBOJJ,lITCli rpynnoBbie npe06pa30BaHHlI, KOTopble c06HpalOT

CHOBa Bee 3J1eMeHTbI H yJJ,OBJIeTBOpaIOT TO'fHbIM rpaHK'fHblM YCJIOBHlIM. 3To npHBOJJ,HT K CHCTeMe HeJlK­

HeAHbIX aJIre6paH'fecKHx ypaBHeHHA B o606rueHHbIX nepeMerueHHlIX. )l;alOTcli 'fKCJleHHble npHMepbI )J,JI1i

06J1ef'feHHlI paC'feTOB.


